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Abstract

Recently, Convolutional Neural Nets (CNNs) have been successfully applied
to online visual tracking. However, a major problem is that such models may
be inevitably over-fitted due to two main factors. The first one is the label noise
because the online training of any models relies solely on the detection of the
previous frames. The second one is the model uncertainty due to the randomized
training strategy. In this work, we cope with noisy labels and the model uncer-
tainty within the framework of bagging (Bootstrap aggregating), resulting in effi-
cient and effective visual tracking. Instead of using multiple models in a bag, we
design a single multitask CNN for learning effective feature representations of the
target object. In our model, each task has the same structure and shares the same
set of convolutional features, but is trained using different random samples gener-
ated for different tasks. A significant advantage is that the bagging overhead for
our model is minimal, and no extra efforts are needed to handle the outputs of dif-
ferent tasks as done in those multi-lifespan models. Experiments demonstrate that
our CNN tracker outperforms the state-of-the-art methods on three recent bench-
marks (over 80 video sequences), which illustrates the superiority of the feature
representations learned by our purely online bagging framework.
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1. Introduction

Tracking-by-detection approaches prevail in recent years. These methods usu-
ally rely on predefined heuristics and construct a set of positive (objects) and neg-
ative (background) samples from the estimated object location. Often these sam-
ples have binary labels, which leads to a few positive samples and a large negative
training set.

Since Convolutional Neural Networks (CNNs) have been successfully adopted
for object detection, it is not surprising to witness a surge of deep learning methods
for visual tracking [1, 2]. However, although online training has proven a huge
benefits [3, 4, 5], the immediate adoption of CNN for online visual tracking is not
straightforward.

To begin with, CNN requires a large number of training samples, which is
often not available in visual tracking. Moreover, CNN tends to overfit to the most
recent observation, e.g., most recent instance dominating the model, which may
result in the drift problem. Besides, CNN training is computationally intensive for
online visual tracking. The slow updating speed could prevent the CNN model
from being practical. Li et al. [6, 7] handled these problems by either using an
ensemble of CNNs or a single CNN with different sampling methods for positive
and negative classes. Most recently, as an enhanced version of [7], [8] achieves
high tracking accuracies by exploiting color information and label uncertainties.

The underlying reason why online tracking is challenging is that the object lo-
cations, except the first frame, are not always reliable as they are estimated by the
visual tracker and the uncertainty is unavoidable [4]. One can treat this difficulty
as the label noise problem [9, 10, 11]. Furthermore, in the literature of deep learn-
ing, the highly-nonconvex loss function of CNN is usually optimized in a stochas-
tic fashion [12, 13]. As a result, local optimal is almost inevitable in the training
procedure. For offline training tasks, this difficulty could be alleviated using a
large number of training epochs based on large-size training data [13]. In visual
tracking, in contrast, the time budget is highly constrained and only hundreds of
training samples are available for each frame. Given different initial parameters or
different training data, the stochastic gradient descent (SGD) method will easily
lead to totally different CNN models. The label noise and the model uncertainty
could stimulus each other and cause serious object drifting accordingly. To cope
with the model uncertainty, [6] proposes to cache the CNN models over time in a
CNN pool and select the best one in the test phrase. However, this requires to a
extra feature matching process in the test time and the multiple CNN models also
slow down the tracking speed significantly. On the other hand, [7] and [8] employ
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the multiple-lifespan sampling strategy to handle the noisy labels in tracking. [8]
obtained higher accuracy and efficiency than [6], but performs unstably as it re-
lies on merely a In this work, we propose to solve the above two problem in one
framework, i.e., a CNN Bagging.

The bagging has a few superior characteristics. For example, bagging is more
sensible than the methods based on multiple lifespans [14], because it does not
require additional information to combine the detected results for multiple lifes-
pans, and does not need to cope with the dilemma between long term and short
term memory. However, the bagging usually results in significant computation
loads, because each individual model needs to be updated simultaneously.

Instead of multiple CNNs, we propose a single multitask CNN for learning
effective feature representations of the target object. In our model, all tasks share
the same set of features and each task is trained using different set of random
samples. Each task generates scores for all possible hypotheses of the object
locations in a given frame, and the prediction of the object is obtained by simple
soft-max operation of the scores in the current frame.

Our experiments on three recent benchmarks involving over 80 videos demon-
strate that our method outperforms all the compared state-of-the-art algorithms
and rarely loses the track of the objects. In addition, it achieves a practical track-
ing speed (from 1fps to 2.5fps depending on the sequence and setting), which is
comparable to state of the art visual trackers. Our main contributions include:

• We proposed to use CNN bagging for coping with noisy labels and model
uncertainty simultaneously in online visual tracking.

• We designed a single multitask CNN that implements the CNN bagging
effectively.

• We achieved the best reported results in the literature at the speed up to
2.5fps.

2. Related work

Image features play a crucial role in many challenging computer vision tasks
such as object recognition and detection. Unfortunately, in many online visual
trackers features are manually defined and combined [15, 16, 17, 3]. Even though
these methods report satisfactory results on individual datasets, hand-crafted fea-
ture representations would limit the performance of tracking. This necessitates
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good representation learning mechanisms for visual tracking that are capable of
capturing the appearance effectively changes over time.

As a compelling tool for feature representation learning, deep learning has
gained significant attention and has been successfully adopted to different com-
puter vision applications. Different from the traditional hand-crafted features [18,
19], a multi-layer neural network architecture can efficiently capture hierarchical
features that describe the data [20]. In particular, the CNN has shown superior per-
formance on standard object recognition tasks [13, 21, 22] with minimal domain
knowledge.

In the visual tracking literature, an ensemble of CNNs [6] and a single CNN
[7, 8] with multiple lifespan samples have been proposed for online tracking.
However, these methods either suffer from slow speed caused by the large-size
CNN pool [6] or unstable output due to the randomized learning procedure for a
single CNN [7, 8]. In this work, we employs a CNN bagging model with mini-
mal computational overhead to strike the balance between robustness and tracking
speed.

Please note that in recent years, some deep learning based visual trackers [2,
23, 24] have also been proposed and illustrate the state-of-the-art performances.
However, most of them requires some offline learned features based on a large
dataset, which is different from the purely online setting adopted in this paper.

3. Our approach

We first introduce the basic ideas and notations for the online visual tracking
using CNN, then we propose a multitask CNN framework as solution to a bag of
CNN models. We further provide our sampling procedure and our loss function.

3.1. The existing online CNN trackers
We briefly describe the state of the art CNN architecture for online visual

tracking ([6, 7, 8]).
In visual tracking, a bounding box of the object of interest (foreground) is

given in the first frame. The CNN-based tracker then online learn a foreground-
background detector, and apply the detector to the next frame(s). Once an optimal
location in a new frame is detected, it is regarded as the ground truth of this frame,
and a set of foreground and background image patches in this frame are added to
the training samples. The detector is re-trained and this detection-training process
continues for subsequent frames. One can see that the above process can easily
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lead to drifting, if the training samples are contaminated during the online update
process.

Let xn and ln ∈ {[0, 1]T, [1, 0]T} denote the the input patch and its ground
truth label (background or foreground) respectively, and f(xn; Ω) be the predicted
score of xn with network weights Ω. When a new frame Γ(t) comes, we predict
the object motion state y∗(t) as

y∗(t) = arg max
yn∈Y

(
f(φ〈Γ(t),yn〉; Ω)

)
, (1)

where Y contains all the test patches in the current frame, and the operation
φ〈Γ,yn〉 suffices to crop the features from Γ using the motion yn.

In [6, 7, 8], the CNN is learned based on multiple cues, which allows the CNN
select the most informative ones in a data driven fashion. As to the model struc-
ture, the online CNN tracker used in [8] takes 32×32 image patches as input. The
first convolution layer contains 12 kernels, each of size 13×13, followed by a max
pooling operation that reduces the obtained feature map to a lower dimension. The
second layer contains 18 kernels with size 7 × 7. This leads to a 72-dimensional
feature vector as the output, after the pooling operation. The two fully connected
layers firstly map the 72-D vector into the 8-D vector and then generate a 2-D
confidence vector s = [s1, s2]T ∈ R2, with s1 and s2 corresponding to the positive
score and negative score, respectively. The CNN score is then given by

f(xn; Ω) = sn = s1 · exp(s1 − s2). (2)

In this work, our CNN bagging algorithm follows the settings of [8] for both
image cue generation and single CNN structure. Readers can refer to [7, 8] for
more details.

3.2. Bagging CNN architecture
This section describes the architecture for our CNN bagging approach. The

loss function, learning procedure and the speedup are presented in the next section.

3.2.1. From a bag of CNNs to a multitask CNN
Bagging (bootstrap aggregation) is a learning algorithm designed to improve

the model robustness, when small changes in the training set causes significant
changes in a single model. As one of the ensemble learning method, Bagging
uses multiple subsets of the training samples and each is used to train a different
model. The results of the models are combined to create a single output.
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Figure 1: The architecture of our CNN tracker with multiple image cues. The dashed blocks on
the left are the CNN channels for different image cues; the 7 tasks are essentially 7 linear mappings
from higher dimensional spaces to 2-D spaces, with the training samples generated from different
lifespans.

Training multiple copies usually implies increasing training time. Therefore,
while the concept of bagging is very attractive, applying this learning algorithm
naively to the online CNN methods such as [6] is impractical in visual tracking.
We also want to note that the idea of using samples from different lifespan [14]
may also suffer from this computational issue, because each individual model
needs to be handled and updated simultaneously.

Neural networks can be set up for multi-task learning conveniently. For in-
stance, it is natural to design a network that has some shared layers, and multiple
separate higher-level layers for different tasks [25]. Motivated by the consen-
sus that the features of the first few convolutional layers in CNN are generic, we
proposed to use a single multitask CNN as bagging for visual tracking. In this
architecture, each task shares the same set of convolutional features while its fully
connected layers are trained with different training samples. Fig. 1 illustrates this
idea. In specific, a single task is referred to as updating a single CNN model cor-
responding to a certain image cue obtained from a certain lifespan. In this work,
we use 3 image cues and 2 different lifespans (l1 and l2 as shown in the figure)
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for generating positive samples 1. This leads to 6 tasks to solve at each frame. In
addition, to jointly update the fully-connected layers for all the image cues (see
[7, 8]) is the 7-th task in our multi-task setting. The 7 tasks are solved alternatively
in a random fashion as described in Sec. 3.3.2.

3.3. Loss function and randomized task selection for CNN training
3.3.1. Structural truncated loss function

For a single task (single CNN model), we using the same loss function as
defined in [8]. The structural loss function is as follows

L =
1

N

N∑
n=1

[∆(yn,y
∗) · ‖f(φ〈Γ,yn〉; Ω)− ln‖T] , (3)

where y∗ is the (estimated) motion state of the target object in the current frame.
∆(yn,y

∗) is based on the IoU criterion [26]. The underlying assumption of using
this structural loss is that patches that are very close to object center and reason-
ably far from it may play more significant roles in training the CNN, while the
patches in between are less important.

The function ‖ · ‖T denotes the truncated l2 norm which is visualized in Fig. 2.
Mathematically, the truncated l2 loss writes:

‖e‖T = ‖e‖2 ·
(

1− 1

[
‖e‖2 ≤

β

(1 + u · ln)

])
, (4)

where u > 0 and ln = ln(1), i.e., the scalar label of the nth sample. It is easy to
see that with the truncated norm ‖ · ‖T the backpropagation process only depends
on the training samples with large errors, i.e., ‖f(φ〈Γ,yn〉; Ω) − ln‖T > 0. As a
result, by ignoring the samples with small errors the backpropagation procedure is
significantly accelerated. Furthermore, Eq. 4 also reflects the intuition that track-
ing is more sensitive to the prediction errors on positive samples rather than those
on negative samples. In the experiment we set u = 4 and β = 0.0025.

3.3.2. Randomized task selection
In the multi-task framework, the loss function can be formulated as a weighted

sum of each task’s loss. Let αi and Li (1 ≤ i ≤ N ) denote the weight and loss for

1the negative samples are generated using a fixed lifespan l3
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Figure 2: The truncated l2 losses. The dashed green curve indicates the original l2 loss, the red
and blue curves are the truncated losses for positive and negative samples.

task i respectively,and L is the overall loss, the multi-task learning is formulated
as:

Ω∗ = min
Ω
L = min

Ω

1

N

N∑
i=1

αiLi. (5)

If αi 6= 0 and αj = 0 (∀i 6= j), the learning is identical to task i. Since we employ
SGD and back-propagation to approximately minimize the loss, the network pa-
rameters are updated using the weighted sum of the gradients from all tasks. Let
wq denote the qth layer network parameter in Ω, Dq

i be the gradient for wq from
task i, and p be the learning rate. The following updating rule applies to each
iteration:

wq ← wq − p
N∑
i=1

αiD
q
i . (6)

Unfortunately, updating the CNN using Eq. 6 does not reduce computational
cost compared to the naive idea that uses a set of identical CNN models. Note
that putting a set of models into an unified multitask framework allows us to ex-
ploit the structure and eventually speed up the training significantly, we propose a
randomized procedure for efficient training in this section.
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We first define two categories of tasks: 1) a major task that updates both its
fully connected layers and convolutional layers, and 2) minor tasks that only up-
date their fully connected layers. In each model update, we select a task as the
major task, and learn both convolutional and fully connected features for the ma-
jor task. The rest of the tasks are regarded as minor tasks, and only their fully
connected layers are updated. In this way, we can employ multiple tasks with
only a marginal complexity increase. This also bypasses the difficulty in selecting
αi for sub-tasks.

In practice, we first update the normal multi-cue CNN (blue dashed block)
using the same method as [8], with different lifespans for positive (lifespan l1 as
shown in Fig. 1) and negative (lifespan l3) samples. Note that this learning process
already solved 4 tasks we defined before. Then, the remaining 3 task is solved
by updating the fully-connected layers corresponding to the 3 image cues with
positive lifespan l2. It is easy to see that compared with the single task solved
in [7, 8], the multi-task proposed in this work only increase the computational
burden marginally. That is because the learning stage of the convolutional layers
dominates the whole procedure and the fully-connected layer for each image cue
can be updated very efficiently.

3.4. Weighted aggregation with fast parameter selection
In the test phrase, the input image patch passes through the CNN model shown

in Figure 1. This leads to 7 CNN scores snj = f(xn; Ωj), j = 1, 2, · · · , 7 for each
test patch. Theoretically, one can learn a linear model v ∈ R7,v � 0 to combine
them with different importances. However, to save the test time and also curb
overfitting, we pre-fix the candidates pool V = [v1, · · · ,vK ]T ∈ RK×7 of the
weight vector v,1Tv = 1. Note the with a relatively large numerical resolution 2,
K is not large and usually in the order of 1e5.

Given that the training samples over all the past frames are {x1,x2, · · · ,xN}
and the corresponding prediction score vectors are {s1, s2, · · · , sN}, with each
sn = [sn

1, · · · , sn7]T. We want to select a “optimal” v such that it yields the
smallest training loss for all the observed training samples. This can be done
easily via exhaustive search given K and N are both small.

3.5. Data augmentation and processing
Our other important implementation details include

2In this work we select vi ∈ { 16 ,
2
6 , · · · , 1}
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• All the training samples are flipped as augmented data to better curb the
overfitting.

• The pixel values of each the image cue are normalized to the range [0, 10],
which aims at balancing the importance between different image cues.

4. Experiments

4.1. Benchmarks and experiment setting
We evaluated our method on three recently proposed tracking benchmarks: the

CVPR2013 Visual Tracker Benchmark [27], the VOT2013 Challenge Benchmark
[28], and the TB-50 benchmark [29]. Most parameters of the CNN tracker are
given in Sec. 3.2. In addition, there are some motion parameters for sampling the
image patches. In this work, we only consider the displacement ∆x,∆y and the
relative scale s = h/32 of the object, where h is object’s height.

Given a new frame, we sample 1500 random patches in a Gaussian distribution
which centers on the previous predicted state. The standard deviation for the three
dimensions are min(10, 0.5 · h), min(10, 0.5 · h) and 0.01 · h, respectively. Note
that, all parameters are fixed for all videos in both two benchmarks; no parameter
tuning is performed for any specific video sequence.

We run our algorithm in Matlab with an unoptimized code mixed with CUDA-
PTX kernels. The hardware environment includes one quad-core CPU, 16GB
Memory, and one NVIDIA GTX980 GPU.

4.2. Results on the CVPR2013 benchmark
The CVPR2013 Visual Tracker Benchmark [27] contains 50 fully annotated

sequences. These sequences include many popular sequences used in the online
tracking literature over the past several years. The first row in Fig. 3 shows
the first frames of some of the videos. For better evaluation and analysis of the
strength and weakness of tracking approaches, these sequences are annotated with
the 11 attributes including illumination variation, scale variation, occlusion, defor-
mation, motion blur, fast motion, in-plane rotation, out-of-plane rotation, out-of-
view, background clutters, and low resolution. Here, we compare our method with
other 11 tracking methods. Among the competitors, TPGR [5] and KCF [30] are
the most recently state-of-the-art visual trackers; TLD [31], VTD [32], CXT [33],
ASLA [34], Struck [3], SCM [35] are the top-6 methods as reported in the bench-
mark; CPF [15], IVT [36] and MIL [4] are classical tracking methods which are
used as baselines.
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Figure 3: The first frames of the video sequences from the CVPR2013 (first row), the VOT2013
(second row), and the TB-50 benchmarks (third row). From top left to bottom right: MotorRolling,
Boy, Crossing, David3, Basketball, Bicycle, Car, David, Diving, Gymnastics, and the sequences
in the TB-50 benchmark. The red blocks are the object locations given in the first frame.

The tracking results are evaluated via the following two measurements: 1)
Tracking Precision (TP), the percentage of the frames whose estimated location
is within the given distance-threshold (τd) to the ground truth, and 2) Track-
ing Success Rate (TSR), the percentage of the frames in which the overlapping
score between the estimated location and the ground truth is larger than a given
overlapping-threshold (τo). Following the setting in the recently published work
[5, 30], we conduct the experiment using the OPE (one-pass evaluation) evalua-
tion strategy for a better comparison to the latest methods.

First, we evaluated our method using different criteria (different τd, τo). Specif-
ically, we evaluate the trackers with the thresholds τd = 1, 2, · · · , 50 for TP. For
TSR, we use the thresholds τo = 0 to 1 at the step of 0.05. Accordingly we gen-
erated the precision curves and the success-rate curves for each tracking method
(Fig. 4).

From the plots we can see that overall the CNN tracker ranks the first (red
curves) in both TP and TSR evaluations. The proposed method outperformed all
the other trackers when τo < 0.68 and τd > 10. When the overlap thresholds are
tight (e.g. τo > 0.75 or τd < 5), our tracker has similar behavior to rest of the
trackers we tested.

In many applications, it is important not to loose the target object. Fig. 4
shows that when the evaluation threshold is reasonably loose, (i.e., τo < 0.45 and
τd > 20) our algorithm is very robust with both the accuracies higher than 80%.
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Figure 4: The Precision Plot (left) and the Success Plot (right) of the tracking results on the
CVPR2013 benchmark. Note that the color of one curve is determined by the rank of the corre-
sponding trackers, not their names.

Notably, it achieves the accuracies around 90% when τo < 0.3 and τd > 30, which
has a significant performance gain compared to the state of the art and suggests
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that our tracker rarely looses the object.
Notably, our tracker performs significantly better in fast motion, illumination

change, and occlusion, which are some of the most difficult scenarios in track-
ing. Please refer to the Supplemental Materials for the detailed comparison. This
demonstrates that our bagging mechanism is very effective in tackling noisy labels
and avoids overfitting.

It is also worth noting that from the previous CNN-based tracker (CNN-ACCV
in the plots), significant performance gain has been made thanks to the proposed
Bagging framework and other modifications.

4.3. Results on the VOT2013 benchmark
The VOT2013 Challenge [28] provides an evaluation kit and the dataset with

16 fully annotated sequences for evaluating tracking algorithms in realistic scenes
subject to various common conditions (the second row in Fig. 3).

Our PLT LGTpp FoT EDFT LGT
Acc. Rank 9.22 9.98 12.57 9.44 11.10 14.01
Rob. Rank 6.40 6.79 7.79 12.87 11.72 8.86
Rank 7.81 8.39 10.18 11.15 11.41 11.44

Table 1: The performance comparison between CNN tracker and the top-5 trackers on the
VOT2013 benchmark. The best score in each row is shown in red while the second best is shown
in blue.

The tracking performance in the VOT2013 Challenge Benchmark is primarily
evaluated with two evaluation criteria: accuracy and robustness. The accuracy
measure is the average of the overlap ratios over the valid frames of each sequence
while the tracking robustness is the average number of failures over 15 runs. A
tracking failure happens once the overlap ratio measure drops to zero and an re-
initialization of the tracker in the failure frame is conducted so it can continue.
According to the evaluation protocol, three types of experiments are conducted.
In Experiment-1, the tracker is run on each sequence in the dataset 15 times by
initializing it on the ground truth bounding box. The setting of Experiment-2 is the
same to Experiment-1, except that the initial bounding box is randomly perturbed
in the order of ten percent of the object size. In Experiment-3, the colorful frames
are converted into grayscale images.

We follow the evaluation protocol to compare our method against 27 tracking
algorithms provided in the benchmark. On average, the proposed method ranks
the first for both accuracy and robustness comparison (Table. 1). For each row,
the best score is highlighted in bold and red and the second best score is denoted
by blue.
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Figure 5: The rank plots of accuracy and robustness for the VOT2013 benchmark (Experiments
1-3, respectively. See text for details). Note that the for a good tracker, the symbol is usually
shown in the top-right area.

We further show the scores for Experiments 1-3, respectively (Fig. 5). Our
method (denoted by red circle) is located in the top-right compared to other meth-
ods, which means higher accuracy and better robustness. Compared to other com-
petitive tracking methods such as PLT [28], FoT [37], EDFT [38] and LGT++
[39], our method has a noticeable performance gain in accuracy and/or robustness.
Specifically, our method achieves the best robustness scores for all the scenarios
while ranks the second in accuracy for all the experimental settings.

Note that the scores listed in the plots in Fig. 5 are rank-based, which is differ-
ent from the measuring criterion used in the CVPR2013 benchmark. This offers
a different point of view for assessing the tracking method. Therefore, the per-
formance on the VOT2013 benchmark justifies the superiority of the proposed
tracker.

4.4. Results on TB-50 benchmark
TB-50 is the latest benchmark dataset (the third row in Fig. 3). It contains

half of sequences in the full benchmark (TB-100), which has 100 sequences from
recent literature. There are 22 new sequences in TB-50 that are not included
in CVPR2013 dataset. Following the CVPR2013 benchmark, the test sequences
are tagged with 11 attributes, and 29 publicly available visual trackers have been
tested.

The evaluation criteria of TB-50 are similar to those in the CVPR2013 bench-
mark, with the addition of SRER (Spatial Robustness Evaluation with Restart).
As pointed out in [29], the computational cost is very high. While our tracker is
fast in the category of CNN-based method, in our experiment we choose not to
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compare to this criterion due to this reason, and report the scores using the OPE
score.

Since the OPE data for other methods on this dataset are not publicly available,
we only report our results compared with KCF [30] which is one of the state-of-
the-art method in Fig. 6. From the plots we can observe the big performance
gap between these two tracking methods. Compared to the results reported in the
project website of [29] (https://sites.google.com/site/benchmarkpami/),
our method outperforms state of the art methods on this latest benchmark. A fur-
ther comparison with Fig. 4 suggests that the TB-50 dataset is a more challenging
dataset than the CVPR2013, because both Precision and Success scores decrease.
More results for individual categories are shown in the Supplemental Materials.

Figure 6: The Precision Plot (left) and the Success Plot (right) of the tracking results of BagCNN
and KCF on the TB-50 benchmark.

4.5. Tracking speed analysis
We report the average speed (in fps) of the proposed method in Table 2. Note

that there are two kinds of average speed scores: the average fps over all the
sequences and the average fps over all the frames. The latter one reduces the
influence of short sequences where the initialization process usually dominates
the computational burden.

Sequence Average Frame Average
1.32fps 1.68fps

Table 2: The tracking speed of the proposed method.

15

https://sites.google.com/site/benchmarkpami/


We can see that our method tracks the object at an average speed around
1.7fps. Considering that the speed of TPGR is around 3fps [5] and those of the
Sparse Representation based methods are usually lower than 2.5fps according to
[14], this suggests that our method achieves comparable speed to the state of the
art methods.

5. Conclusion

This paper proposed a single multitask CNN as bagging for coping with noisy
labels in visual tracking. We developed an efficient training method for the multi-
task CNN, resulting minimal overhead in training. Together with a new loss func-
tion and an improved sampling process, our CNN tracker outperformed state of
the art methods on three recently proposed benchmarks (over 80 video sequences),
which demonstrates the superiority of our purely online bagging framework.
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